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Abstract
Aim: Dentine hypersensitivity (DH) is characterized by a short, sharp pain aris-
ing from exposed dentin. Most published literature reports on peripheral neural
aspects of this pain condition. The current investigation focused on differential
cerebral activity elicited by stimulation of sensitive and insensitive teeth by means
of natural air stimuli.
Materials and Methods: Five graded stimulus strengths were randomly applied by
means of a multi-injector air jet delivery system, each followed by an individual
rating of perceived stimulus intensity. Brain activity was analysed by functional
magnetic resonance imaging (fMRI).
Results: Stimulation of sensitive teeth induced significant activation in the thala-
mus, somatosensory cortices (SI & SII), anterior, middle and posterior insular
cortices, anterior mid cingulate cortex, perigenual anterior cingulate cortex and
frontal regions (BA10 and BA46). Differential responses to DH and painless per-
ceptions were observed in the anterior insula and anterior midcingulate cortex.
Conclusion: For the first time, this fMRI study demonstrates the feasibility of
investigating cerebral processes related to DH evoked by natural (air) stimuli.
Our neuroimaging data additionally provide evidence that differential activity in
the anterior Insula (aIC) and anterior midcingulate cortex (aMCC) may represent
clinically relevant pain experienced by DH patients.
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Dentine hypersensitivity (DH) is a
common clinical problem related to
dental surface alterations caused by
factors including e.g. abrasion, ero-

sion, corrosion, gingival recession
and periodontal treatment (Dowell &
Addy 1983, Rees & Addy 2002, Que
et al. 2010). The global prevalence is
in the range of 10–30%, depending
on study population, setting and
design (Rees & Addy 2004). By com-
parison, patients with periodontal
diseases have been reported to be at
particularly high risk (up to 76%)
for experiencing it (Chabanski et al.
1996, Tammaro et al. 2000, Troil
et al. 2002). Multiple DH interven-
tions have been tested over the years,
but a lack of standardization of pain

measurement has been identified as a
major handicap for assessing the effi-
cacy of agents applied (Poulsen
2011). A potential solution to this
problem might be provided by mod-
ern neuroscientific techniques,
including functional magnetic reso-
nance imaging (fMRI). Neuroimag-
ing methods revealed that a group of
specific brain areas, known as the
pain or nociceptive matrix, form a
modular network that is preferen-
tially activated when painful stimuli
are applied to spinal nerve territories.
However, numerous differences
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between the trigeminal and spinal
sensory systems have been described,
which justify focused dental pain
investigations (Sessle 2007). Studies
investigating the brain’s reaction to
painless and painful electric tooth
stimuli revealed variable neural acti-
vation in the primary (SI) and sec-
ondary (SII) somatosensory cortices,
subdivisions of the cingulate cortex,
the insular cortex, thalamus, cerebel-
lum and frontal regions by showing
altered neural activity (Ettlin et al.
2004, 2009, Habre-Hallage et al.
2010, Weigelt et al. 2010, Brügger
et al. 2011, 2012). Although tooth-
ache induction by electric current has
merits as an experimental model, air
blast application to sensitive teeth
better mimics the clinical pain experi-
enced by DH patients (Ide et al.
2001, Yilmaz et al. 2011). The cur-
rent report aimed at identifying corti-
cal regions that show a differential
response between sensitive and insen-
sitive teeth stimulations. This is the
first report using fMRI for investi-
gating DH.

Materials and Methods

Recruitment and sensitive tooth

assessment

Seventy-one potential subjects read a
web announcement and answered an
online questionnaire; 26 of them
were invited for a screening visit.
This selection was primarily based
on the self-report whether subjects
experienced unpleasant and/or pain-
ful sensations when pulling air
through the mouth/teeth. During the
first visit, the sensitive tooth and the
contralateral healthy insensitive
tooth were clinically and radiograph-
ically evaluated by a dentist. After
the medical history was reviewed
and an oral soft tissue examination
was performed, the sensitive tooth
was required to show signs of facial/
cervical erosion, abrasion and/or
gingival recession and no facial res-
toration. Exclusion criteria for test
teeth were: caries, defective restora-
tions, full crowns, orthodontic
bands, bleeding on probing and peri-
odontal pockets deeper than 3 mm.
Subjects with gross periodontal dis-
ease or treatment of periodontal dis-
ease in the past 12 months were
excluded. Only incisors, canines and
premolars were evaluated as molars

were unsuitable for installation of
the air delivery tubes (Fig. 1). Sensi-
tivity to air was tested by a triple air
syringe commonly used in dentistry.
The evaporative stimuli consisted of
1 s blasts of air directed to the buc-
cal area of the recession, at approxi-
mately 1 cm distance from the
affected tooth surface. Subjects were
instructed to report stimulus percep-
tions by means of a horizontal 0–10
numerical rating scale with 0 labelled
as “no pain” and 10 as “worst imag-
inable pain”. For each tooth, a rat-
ing of at least 5 was required to be
classified as sensitive. Analogue
insensitive contralateral teeth were
tested for air blast insensitivity. Six-
teen subjects did not fulfil the inclu-
sion requirements: 13 of them had
no insensitive tooth on the opposite
side and 3 subjects experienced sensi-
tivity in molar teeth only. The final
DH study group consisted of 10 sub-
jects (age 21–55, mean 29.7, eight
women). The sensitive tooth was
located in the maxillary jaw in 9 of
10 subjects. In five subjects, the sen-
sitive tooth was located on the right
side.

The study was approved by the
local ethics committee of the Univer-
sity of Zurich and conducted accord-
ing to the guidelines of the
Declaration of Helsinki for treat-
ment of experimental human sub-
jects. Subjects were financially
compensated.

Experimental material

Blu-Mousse (Thixotropic Vinyl Poly-
siloxane; Edgewood, MD, USA)
impressions were taken from the
subject’s dentition; 6 mm diameter
holes were drilled at the labial gingi-
val margin of test teeth. Two clear
polyurethane tubes (Festo AG, Di-

etikon, Switzerland) of 4 mm inner
diameter for air stimulation were
permanently mounted into the holes
of the impression with blu-mousse.
For outward flow of the applied air,
little grooves were drilled beside the
tube holding holes (Fig. 1).

A modified portable version of
the air puff delivery system previ-
ously described (Megias-Alguacil
et al. 2008) was used for tooth stim-
ulation (Fig. 1). This system is capa-
ble of operating in a magnetic
resonance imaging environment and
enables application of graded air
streams with flow rates starting at
1 l/min. (barely noticeable) to 20 l/
min. The air temperature matched
the room temperature, which in the
MR scanner room was controlled at
19.5 ± 1°C.

Psychophysical examination

Between one and 2 weeks prior to
the MR experiment, subjects
received extensive training during a
psychophysical test session, which
served to familiarize subjects with
the stimulation paradigm. For deter-
mination of stimulus perception
threshold, subjects were seated
upright in a dental chair and com-
fortable fit of the stimulation tube
holding impression was checked. In
particular, care was taken that the
soft splint did not evoke any pain or
discomfort. Air blast stimuli of 1 s
duration were applied at randomized
inter-stimulus intervals (ISI) between
7.5 and 12.5 s. Using a staircase
method, the sensory detection
threshold (SDT = defined as the
lowest flow rate at which the volun-
teer sensed an air puff) was deter-
mined, starting at a flow rate of 1 l/
min. (system inherent lower limit),
with subsequent 1 l/min. increments.

Fig. 1. Stimulation material. Left: MRI compatible multi-injector gas jet delivery sys-
tem with touch screen. Right: Individual dental polysiloxane impression.
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Pain detection threshold (PDT = the
lowest flow rate that was perceived
as just painful) and pain tolerance
threshold (PTT = the maximum air
flow rate that the subject would
freely tolerate) were determined by
further stepwise increases of flow
rates. The threshold detection proce-
dure was repeated three times with
5 min. breaks between each series.
SDT, PDT and PTT were calculated
as the mean of three repetitive mea-
surements. All stimuli were con-
trolled by a computer and neither
the test persons nor the investigator
viewed the computer screen to
reduce bias in the psychophysical
assessment procedure. The five stim-
ulus strengths for the fMRI protocol
were calculated as follows: PDT-
40%, PDT-10%, PDT + 20%, PDT
+ 40% and PDT + 60% (Fig. 2).
The same stimulus strengths were
also applied to the insensitive tooth.

Once thresholds were determined,
a psychophysical testing session was
performed in order to familiarize
subjects with the fMRI test protocol.
The scanner environment was simu-
lated by dimming room light and
subjects were placed in supine posi-
tion. They were given a headset
playing an fMRI-EPI-sequence au-
diofile and were asked to wear video
goggles displaying a computerized
visual rating scale (coVRS) with 12
marks. The left anchor (first mark)
was labelled “no sensation”, the 4th
mark “pain threshold” and the right

anchor (12th mark) “worst imagin-
able pain” (Fig. 2). This approach
enabled subjects to rate the perceived
intensity of painless and painful
stimuli using the same scale. Subjects
were instructed to concentrate
explicitly on the intensity of the per-
ceived stimulus. The coVRS
appeared one-second after stimulus
onset and was shown for six-seconds
during which subjects moved the
lever of a MR compatible potenti-
ometer. The position of this lever
was linearly transformed into the
position of a mark on the rating
scale. The stimulation protocol con-
sisted of 50 stimuli (10 stimuli/
strength) applied in random order
with a randomized ISI between 7.5
and 12.5 seconds to minimize antici-
pation and to optimize peri-stimulus
fMRI sampling times (Fig. 2). After
disappearance of the rating scale, a
fixation cross was displayed until the
next rating scale appeared.

FMRI data acquisition

Within 2 weeks after psychophysical
testing, subjects underwent the fMRI
protocol in a Philips 3-Tesla Achieva
System (Philips Medical System,
Best, the Netherlands). The protocol
started by retesting individual
thresholds (SPT, PDT). If either
SDT or PDT deviated more than
20% from the value assessed during
the previous psychophysical test ses-
sion, subjects were excluded from

further participation. As several
investigations indicate a diurnal vari-
ation of pain perception (Fillingim &
Ness 2000, Koch & Raschka 2004),
this investigation took place at the
same daytime as the psychophysical
examination. Subjects underwent the
same stimulation protocol as per-
formed during psychophysical exam-
ination, except that headphones were
replaced by earplugs and real fMRI
scans were acquired.

For functional scanning, a blood
oxygen level dependent (BOLD) sen-
sitive single-shot gradient echo pla-
nar imaging sequence was used to
acquire 33 axial slices, covering the
entire cerebrum and cerebellum,
using an 8 channel receive-only head
coil. Parameters: echo time = 30 ms,
flip angle = 75°, repetition time =
2500 ms, slice thickness = 4 mm,
inter-slice gap = 0 mm, field of
view = 230 mm and matrix size in
plane = 128 9 128, resulting in a vo-
xel size of 1.72 9 1.72 = 4 mm3.
Three dummy scans were first
acquired and discarded to reach
steady state magnetization. In
addition, 180 high-resolution T1
weighted axial slices (spoiled gradi-
ent echo) were acquired with TR =
20 ms, flip angle = 20°, voxel size =
0.98 9 0.98 9 1.02 mm3, FOV
= 22 cm, matrix = 224 9 187, which
were used as an underlay for individ-
ual functional maps and for obvious
neurological disorders.

After the experimental protocol,
participants were asked whether they
had perceived the stimulation in the
test tooth only or also in adjacent
tissue.

Data analysis

For the current report, we focused
on the stimulus strengths 3–5 of the
sensitive tooth (painful) and insensi-
tive tooth (painless) to investigate
specific cortical underpinnings of
the painful perceptions of DH in
comparison with the painless per-
ceptions elicited on the insensitive
tooth with identical stimuli. Psycho-
physical data, i.e. the relationship
between the physical stimulus
strength and the subjective intensity
rating, as well as region of interest
(ROI) data, i.e. the relationship
between the physical stimulus
strength and corresponding signal
change in each ROI, have been

(A) (B)

Fig. 2. Paradigm and rating. (A) Schematic of the fMRI paradigm. Stimulus duration
was set to 1 s, interstimulus intervals were kept between 7.5 and 12.5 s. Strengths of
the stimuli were PPT-40%, PPT-10%, PPT + 20%, PPT + 40% and PPT + 60%. The
different strengths have then been applied randomly and subjects were required to rate
every stimulus with respect to their perceived intensity by means of a MR compatible
rating scale. (B) Illustrates the computerized visual rating scale (coVRS) the way it
had been projected after every stimulus for 6 s. Green colour indicates the rectangle
moved by the subject. Left; no perception (nichts wahrgenommen), the fourth rectan-
gle; pain threshold (Schmerzgrenze), right; worst imaginable pain (stärkster vorstellba-
rer Schmerz). Important to note: subjects were trained prior to the fMRI experiment
to handle correctly the coVRS and questions/uncertainties were answered. However,
all subjects quickly understood the use of the scale.
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analysed using SPSS 17 (SPSS Inc,
Chicago, IL, USA).

SPM5 (http://www.fil.ion.ucl.ac.
uk/spm) software package running
on MATLAB R2008b (Mathworks,
Natick, MA, USA) was used for
functional voxel-by-voxel analysis.
In a first step, spatial realignment to
the first image in the series as refer-
ence was performed and it was
assured that detected movement did
not exceed 1.5 mm (translational) or
1° (rotational) in relation to the first
image. For studying group effects,
data were normalized to the MNI
template brain (Evans et al. 1992)
followed by smoothing with a
Gaussian kernel of 6 mm (FWHM).

Image analysis to reveal signifi-
cant changes in cortical activity due
to the three painful stimulus
strengths of the sensitive tooth and
the three non-painful strengths of
the insensitive tooth (conditions) was
performed on each subject’s data by
means of individual (1st level)
general linear models using the
haemodynamic response function
implemented in SPM5. Statistical
parametric maps were then calcu-
lated, yielding beta estimates of the
model fit for each subject and condi-
tion. To avoid any influence of later-
alization effects, we flipped the
parametric maps of the subjects who
had their sensitive tooth on the left
side.

We defined a ROI mask in the
voxel-by-voxel analysis, comprising
several brain regions involved in
pain processing (Apkarian et al.
2005). As DH is classified as a true
pain condition, we expected mainly
activity among these regions. The
primary and secondary somatosen-
sory cortex (SI & SII), insular cor-
tex, anterior cingulate cortex (ACC),
thalamus and prefrontal cortex
(PFC) were taken from the SPM
tool “WFU-Pickatlas” (Lancaster
et al. 1997, 2000) and the “SPM
Anatomy Toolbox” (Eickhoff et al.
2005): In the voxel-by-voxel analysis,
the ROI mask was applied as an
explicit mask, which limits the inves-
tigated voxel space masking region.
Average group statistical map was
then calculated (second level) in a
random effects model, using one-
sample t-tests, testing the BOLD
response to each painful stimulus
strength against the null hypothesis
of no related signal change. Result-

ing voxel T-values were colour-coded
and superimposed onto the MNI
single-subject-T1 brain (Fig. 4).

For more detailed investigation
of the trigeminal nociceptive system,
we calculated the mean activation in
predefined anatomical regions of
interest (ROI). For this purpose, the
insula regions were divided into
three parts, namely in an anterior
(aIC), middle (mIC) and posterior
(pIC) part, according to several
reports, which suggest a complex
anatomical (Varnavas & Grand
1999) and functional (Brooks et al.
2002, 2005) fragmentation within
this particular brain area. The inves-
tigated cingulate cortex regions
consisted of a subgenual part
(sACC), a perigenual part (pgACC)
and more posterior part, namely the
anterior mid cingulate cortex
(aMCC), after the classification of
Vogt (2005). The secondary somato-
sensory cortex (SII) was delineated
into four subregions OP1–OP4 based
on Eickhoff et al. (2006). Finally,
frontopolar (BA10) and frontomedi-
al (BA46) areas constituted the pre-
frontal cortex.

The mean activation within each
ROI, determined by the individual
mean beta values, was calculated for
each of the three stimulus strengths
across both teeth. A repeated mea-
sures ANOVA was then calculated for

all ROIs with tooth (sensitive/insen-
sitive) as within-subject factor. For
the ROI analysis, a significance
threshold of p < 0.05 was used.

Results

Psychophysics

Due to the brief after-scanning inter-
view, we were able to assure that all
subjects felt the sensation at the
stimulated tooth only. In all subjects,
the highest applied stimulus strength
was below PTT. Subjects reported
no unpleasant or otherwise disturb-
ing perceptions due to the inserted
splint. In addition, they felt no lin-
gering sensation after the stimula-
tion, indicating that no tissue
sensitization had been induced due
to the experimental setup. Further-
more, no subjects had to be excluded
due to excessive deviations from
SDT, PDT and PTT values of the
psychophysical examination.

Subjective mean ratings of the
respective stimulus strengths during
the scanning session showed clearly
that the two lowest stimulus
strengths applied on the sensitive
tooth were rated as non-painful,
whereas stimulus strengths 3–5 were
rated as painful. As expected, stimu-
lations of the insensitive tooth were
always rated as non-painful (Fig. 3).

Fig. 3. coVRS ratings. Group mean stimulus strength in l/min. and corresponding
mean coVRS ratings (with standard errors of the mean in brackets and graphically
shown as T-bars) during the fMRI stimulation experiment. The pain threshold is illus-
trated by the dashed line.
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Brain activation patterns

As hypothesized, painful stimulation
of the sensitive tooth induced signifi-
cant activation in regions of the pain
matrix (Fig. 4), namely somatosensory
cortices (SI & SII), anterior, middle
and posterior insular cortices, pgACC
and aMCC, thalamus as well as fron-
tal regions (BA10 and BA46). See
Table 1 for respective T- and p-values.

Region of interest analysis

We found a significant main effect of
tooth, ipsi- and contralateral to the

affected side, in the aIC (F = 7.45,
p = 0.02/F = 7.92, p = 0.02) as well
as in the aMCC (F = 8.84, p = 0.02/
F = 9.33, p = 0.01). No further sig-
nificant main effects of tooth were
observed in any other investigated
region (Fig. 5, Table 2).

Discussion

Patients with periodontal disease
commonly suffer from DH, yet our
knowledge of central mechanisms
associated with DH is very limited.
The key finding of this study is that

air blast stimuli of graded flow
applied to sensitive and insensitive
teeth evoked significant BOLD sig-
nal changes in several areas of the
human brain. Compared with base-
line neural activity, painful stimula-
tions of sensitive teeth resulted in
significant activations of somatosen-
sory cortices SI and SII, insular and
cingulate cortices, thalamus and
frontal regions (Fig. 4, Table 1).
Activation of a similar modular net-
work was previously reported in
response to painful electric tooth
stimulation (Ettlin et al. 2009, Wei-
gelt et al. 2010, Brügger et al. 2011).
Of particular interest was the head-
to-head comparison between sensi-
tive and insensitive teeth. Significant
activation differences between sensi-
tive and insensitive teeth for DH-
pain versus painless air stimuli were
observed in anterior portions of the
insular (aIC) and anterior midcingu-
late cortex (aMCC) (Fig. 5). These
structures might therefore play spe-
cific roles in processing DH pain. In
the following section, we discuss
these two regions and their potential
relationship with DH pain in more
detail.

Insular cortex

Despite several interpretations and
discussions about its functional spec-
ificity, the insular cortex is generally
considered to play an important role
within the nociceptive functional
integration circuitry. Posterior por-
tions seem more related to sensory
aspects of pain, while anterior parts
are associated with emotional, cogni-
tive and memory-related aspects of
pain perception (Apkarian et al.
2005). Craig (2009) even postulates a
posterior-to-mid-to-anterior pattern
of integration of interoceptive sen-
sory information in the insula. In a
PET study, they demonstrated a dis-
tinct stimulus processing pattern:
objective sensory information pro-
cessing in the posterior part was fol-
lowed by integration of the
information in the middle part and
was finally re-represented more sub-
jectively in the anterior part (Craig
et al. 2000). In other words, the
incoming sensory stimulus receives
its subjective signature in the aIC.
The aIC thus seems to be involved
in the very subjective decision
whether a stimulus is painful or not,

Fig. 4. Brain imaging data. fMRI activation projected on the rendered MNI single
subject T1 template. Illustrated is the brain activity in response to the pooled painful
stimulus strengths of the sensitive tooth revealed via one-sample t-tests. A conservative
statistical threshold (FWE-corrected with p < 0.05) has been chosen. F = frontal,
O = occipital, R = right, L = left, I = inferior and S = superior.

Table 1. Peak activations of sensitive tooth stimulation

Brain region
(contralateral | ipsilateral)

Local maxima
(MNI coordinates)

Local maxima
(p-values)

Local maxima
(T-values)

SI | contralateral �54 �32 54 0.000 10.77
SI | ipsilateral 60 �16 44 0.000 8.29
SII | contralateral �56 �26 14 0.000 7.99
SII | ipsilateral 62 �14 10 0.000 10.63
aIC | contralateral �30 22 �2 0.000 9.43
aIC | ipsilateral 34 26 �2 0.000 11.63
mIC | contralateral �44 10 �8 0.000 8.60
mIC | ipsilateral 44 10 �2 0.000 11.59
pIC | contralateral �42 �12 2 0.003 4.75
pIC | ipsilateral – – –
Thalamus | contralateral �14 �20 2 0.000 8.72
Thalamus | ipsilateral 12 �12 2 0.000 6.21
pgACC | contralateral �8 32 18 0.000 6.66
pgACC | ipsilateral 4 32 34 0.000 6.49
aMCC | contralateral �2 30 32 0.000 8.21
aMCC | ipsilateral 6 26 38 0.000 10.58
BA 10 | contralateral �30 44 30 0.000 6.81
BA 10 | ipsilateral 38 40 22 0.000 7.94
BA 46 | contralateral �40 34 20 0.000 6.59
BA 46 | ipsilateral 44 38 20 0.000 8.48

Peak activations of brain areas during painful stimulation of the sensitive tooth
versus baseline ipsi- and contralateral to the affected side.

© 2012 John Wiley & Sons A/S
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while posterior and middle portions
of the insula most likely process and
integrate objective information of
incoming stimuli. This distinct pos-
terior-to-anterior processing pattern
is also depicted in our results. Objec-
tively, the sensitive and the insensi-
tive teeth received the same stimulus
strengths, which could be the reason
for the non-significant differences
between both teeth in the posterior
portion of the insula. Furthermore,
it is reasonable to assume that sen-
sations from sensitive teeth inform
the brain about a greater potential
for damage. Hence, activity differ-
ences within the aIC probably reflect
the subjective interpretation whether
the stimulation was painful or
painless and whether a sensitive or
insensitive tooth was stimulated,
respectively.

Cingulate cortex

As in the aIC, we observed a similar
tooth specific activation pattern in
the aMCC. Approximately 87% of
pain imaging studies report activa-
tion of the anterior cingulate cortex
(Apkarian et al. 2005). However,
none of the cingulate cortex subdivi-
sions is attributed a specific role for
nociception. They are rather thought
to serve as integrative processing
domains related to several cognitive
and emotional aspects of pain expe-
riences. A recent expert report pro-
posed a “cingulate premotor pain
model” in which pain stimuli lead to
autonomic and behavioural motor
responses (Sikes et al. 2008). It has
also been known from animal stud-
ies that cingulate cortex lesions pro-
duce a decrease in pain sensitivity

and avoidance behaviour (Devinsky
et al. 1995). Considering our results,
the aMCC activity levels showed dif-
ferential activity in response to stim-
ulation of sensitive teeth (DH pain)
and insensitive teeth (painless). This
could be a consequence of higher
arousal and stronger response to
potentially harmful states as, from a
patient perspective, the painful air
blasts may have had high negative
valence. The stronger activation lev-
els of sensitive teeth in the aMCC
may indicate an initiation of avoid-
ance behaviour and motor prepara-
tion in response to DH pain.

Conclusion

In the present study, we demonstrate
that application of “natural” air
stimuli to sensitive teeth induced
cerebral activity patterns that share
commonalities with the often-
described “pain matrix”, a modularly
organized brain network mainly acti-
vated by nociceptive inputs (Peyron
et al. 2000). Our neuroimaging data
additionally provide evidence that
differential activity in the aIC and
aMCC may represent clinically rele-
vant pain experienced by DH
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Fig. 5. Results of the ROI analysis. Illustrated is the relationship between brain
activity (y-axis, mean beta values) and the respective stimulus strengths (x-axis, levels
3–5). Red lines indicate the sensitive, green lines the insensitive tooth. Stars indicate a
significant main effect of tooth. T-Bars indicate standard errors of the mean.

Table 2. DH pain-related regions

Brain region
(contralateral
| ipsilateral)

p-Value F-value

SI | contralateral 0.35 0.96
SI | ipsilateral 0.31 1.14
SII | contralateral 0.75 0.10
SII | ipsilateral 0.40 0.65
aIC | contralateral 0.02 7.45
aIC | ipsilateral 0.02 7.92
mIC | contralateral 0.84 0.04
mIC | ipsilateral 0.83 0.05
pIC | contralateral 0.12 2.95
pIC | ipsilateral 0.18 2.08
Thalamus |
contralateral

0.19 1.93

Thalamus | ipsilateral 0.26 1.45
pgACC | contralateral 0.98 0.00
pgACC | ipsilateral 0.37 0.87
aMCC | contralateral 0.02 8.84
aMCC | ipsilateral 0.01 9.33
BA 10 | contralateral 0.97 0.00
BA 10 | ipsilateral 0.27 1.40
BA 46 | contralateral 0.46 0.58
BA 46 | ipsilateral 0.20 1.96

Results of the ROI analysis. Reported
is the main effect “Tooth” of the repeated
measures ANOVA with respective p- and
F-values in ipsi- and contralateral regions
to the affected side.
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patients. Therefore, response patterns
in these two brain regions may
potentially serve as supplemental
(objective) outcome measure for
assessing the efficacy of DH pain
interventions in the future.
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Clinical Relevance

Scientific rationale for the study:
DH can considerably impact qual-
ity of life. Pain research revealed
that besides brain areas coding
somatosensory information, regions
for emotional and cognitive-
behavioural signal processing are
additionally activated during noci-
ception. Brain activation in
response to “natural” DH provok-

ing stimuli was never investigated
and was therefore this study’s aim.
Principal findings: The present feasi-
bility study provides the first func-
tional neuroimaging data on human
brain activity in response to graded
air stimuli applied to sensitive and
insensitive teeth.
Practical implications: Our new
experimental approach is likely to
improve our understanding of the

neurobiology underlying DH
beyond peripheral processes. We
further investigate the neuronal
activation patterns underlying pain-
less and painful tooth stimulations,
which can serve as an additional
objective measure and validation of
DH pain respectively.
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